Kongsberg Mesotech supplies a worldwide customer base with products for search and recovery, marine engineering, security and surveillance, fisheries and aquaculture, and various other underwater applications. There is an extensive support network including training, product support and assistance with application and data interpretation.

Kongsberg Mesotech is a world leader in the development of products and solutions for underwater acoustic industry with over 40 years of experience. Characterized by exceptional engineering capabilities, the Company focuses on providing customers with superior image resolution by producing quality and reliable equipment. Continuous research and development keeps pace with growing markets and demand as well as changes in customer requirements.

Kongsberg Mesotech pioneered the use of scanning sonar for underwater marine engineering applications. The Company is a world leader in the development of products used for visualization of underwater structures (bridges, docks, piers, dams etc.) and using sonar to support a multitude of underwater construction applications.

Diving inspections are often challenged by high current, deep water, lack of visibility and debris accumulation around the structure. In addition to limiting the diver from completing a thorough inspection, debris build up around bridge piers is potentially one of the most dangerous conditions the inspection diver faces. It introduces the possibility of entanglement, and even worse, diver entrapment if the debris moves.1

Benefits of Underwater Inspection & Surveying:
- Improved image resolution
- Accurate data reporting
- No disruption to shipping and lower costs

MS 1000 Scanning Sonar System
The high-resolution scanning sonar head operates on the full MS 1000 version processing software. The MS 1000 software has many advanced features for data interpretation, including the ability to measure length and area, geo-reference and track targets.

1 1171 Series high-resolution sonar heads: A. 510scan imaging transducer; B. fan/cone beam imaging and profiling transducer; C. back-to-back sonar imaging transducer

High-resolution Scanning Sonar offers:
- narrower horizontal beam angle and small angular resolution (for superior image quality)
- tunable frequency transducers (model dependant)
- exposed transducer (to eliminate acoustic focusing)
- increased power output (for better signal to noise ratios)

MS 1000 Processing Software offers:
- 3D profiling possible with rotating device
- Track Planter modules allows user to plot scanned area, generates sonar targets and create CTFIIFs
- networking capability
- target tracking
- simultaneous multiple head operation
Underwater inspection of man-made structures is vital as they age. In addition, water currents, corrosion, and damage from storms and vessels may impact structure integrity. Diving inspections can be costly and dangerous due to a lack of visibility, plus inconsistencies in data reporting are common.

High-resolution scanning sonar provides higher definition images, and the compact size and portability of the equipment enable quick, frequent monitoring. The Kongsberg Mesotech scanning sonar and MS 1000 processing software system is ideal for underwater engineering, search and surveillance applications.

Profiling Sonar Applications

Profiling sonar is primarily used for quantitative measurements where a narrow, conically shaped beam generates a single range point for each ping.

Single Axis Profiling

The sonar is positioned stationary while the transducer rotates through a selected arc of coverage and generates a line of profile points. To collect a different profile, the sonar head is re-positioned.

Dual Axis Profiling

Integrating the single-axis profiling head with a mechanical second-axis drive (rotator) provides 3D capability. After collecting the single-axis profile, the head is rotated by the second axis drive through pre-set increments and the scan process repeats. This generates a star-like pattern of profiles from a single position, after which the processed data generates a 3D point cloud projection.

Imaging Sonar Applications

Imaging sonar uses a fan-shaped acoustic beam to scan a specified area or target. Sonar imaging applications include:

- inspection of man-made structures (bridges, docks, piers and dams)
- site and seabed search and survey
- underwater construction support
- positioning stabilization mattresses and cables
- guiding grapples and buoys
- pipeline and cable surveys
- sonar and sediment aggregation monitoring
- monitoring dredging and backfill operations
- diving support
- underwater timber stockpile assessment and recovery operations
- archeological surveying

Scanning Sonar Applications

Scanning sonar is used for quantitative measurements where a narrow, conically shaped beam generates a single range point for each ping.

Single Axis Scanning

The sonar is positioned stationary while the transducer rotates through a selected arc of coverage and creates a line of profile points. To collect a different profile, the sonar head is re-positioned.

Dual Axis Scanning

Integrating the single-axis scanning head with a mechanical second-axis drive (rotator) provides 3D capability. After collecting the single-axis profile, the head is rotated by the second axis drive through pre-set increments and the scan process repeats. This generates a star-like pattern of profiles from a single position, after which the processed data generates a 3D point cloud projection.
Scanning Sonar Applications

Underwater inspection of man-made structures is vital as they age. In addition, water current, corrosion, and damage from storms and vessels may impact structure integrity. Diving inspections can be costly and dangerous due to a lack of visibility, plus inconsistencies in data reporting are common.

High-resolution scanning sonar provides higher definition images, and the compact size and portability of the equipment enable quick, frequent monitoring. The Kongsberg Mesotech scanning sonar and MS 1000 processing software system is ideal for underwater engineering, search and survey applications.

Profiling Sonar Applications

Profiling sonar is primarily used for quantitative measurements where a narrow, conically shaped beam generates a single range point for each ping.

Single Axis Profiling

The sonar is positioned stationary while the transducer rotates through a selected arc of coverage and creates a line of profile points. To collect a different profile, the sonar head is re-positioned.

Dual Axis Profiling

Integrating the single-axis profiling head with a mechanical second-axis drive (rotator) provides 3D capability. After collecting the single axis profile, the head is rotated by the second axis drive through pre-set increments and the scan process repeats. This generates a star-like pattern of profiles from a single position, after which the processed data generates a 3D point cloud projection.

Imaging Sonar Applications

Imaging sonar uses a fan-shaped acoustic beam to scan a specified area or target. Sonar imaging applications include:
- inspection of man-made structures (bridges, docks, pipes and dams)
- site and seabed search and survey
- underwater construction support
- positioning stabilization mattresses and cables
- guiding grapples and buckets
- pipeline and cable surveys
- sonar and sediment aggregation monitoring
- monitoring dredging and backfill operations
- diving support
- underwater timber stockpile assessment and recovery operations
- archaeological surveying

Top: Pipeline stabilization mattresses (Gulf of Mexico).
Above: Standing trees in flooded reservoir (USA). Data courtesy FBI Dive Team.
Right: Oil platform (Gulf of Mexico). Data courtesy Fugro Chance.
Below: River pipeline crossing (Russia). Data courtesy Peter Diving Services.

Top to bottom: Below-waterline acoustic profiling of bridge pier (Finland). Data courtesy VRT Finland OY.
Point cloud projection of under-deck survey (Louisiana, USA). Data courtesy Fenstermaker & Associates Inc.
Dual-axis profiler shipwreck survey (Lake Ontario, Canada). Data courtesy Abnormal Ltd.
Riverbed profile (Finland). Data courtesy of VRT Finland OY.
Underwater inspection of man-made structures is vital as they age. In addition, water currents, corrosion, and damage from storms and vessels may impact structure integrity. Diving inspections can be costly and dangerous due to a lack of visibility, plus inconsistencies in data reporting are common.

High-resolution scanning sonar provides higher definition images, and the compact size and portability of the equipment enable quick, frequent monitoring. The Kongsberg Mesotech scanning sonar and MS 1000 processing software system is ideal for underwater engineering, search and surveying applications.

Imaging Sonar Applications

Imaging sonar uses a fan-shaped acoustic beam to scan a specified area or target. Sonar imaging applications include:

- inspection of man-made structures (bridges, docks, piers and dams)
- site and seabed search and survey
- underwater construction support
- positioning stabilization mattresses and cable
- guiding grapples and buckets
- pipeline and cable surveys
- seafloor and sediment aggregate monitoring
- monitoring dredging and buckfill operations
- dive support
- underwater timber stockpile assessment and recovery operations
- archaeological surveying

Profiling Sonar Applications

Profiling sonar is primarily used for quantitative measurements where a narrow, conically shaped beam generates a single range point for each ping.

Single Axis Profiling

The sonar is positioned stationary while the transducer rotates through a selected arc of coverage and creates a line of profile points. To collect a different profile, the sonar head is re-positioned.

Dual Axis Profiling

Integrating the single-axis profiling head with a mechanical second-axis drive (rotator) provides 3D capability. After collecting the single axis profile, the head is rotated by the second axis drive through pre-set increments and the scan process repeats. This generates a star-like pattern of profiles from a single position, after which the processed data generates a 3D point cloud projection.

Imaging Sonar Applications

Imaging sonar uses a fan-shaped acoustic beam to scan a specified area or target. Sonar imaging applications include:

- inspection of man-made structures (bridges, docks, piers and dams)
- site and seabed search and survey
- underwater construction support
- positioning stabilization mattresses and cable
- guiding grapples and buckets
- pipeline and cable surveys
- seafloor and sediment aggregate monitoring
- monitoring dredging and buckfill operations
- dive support
- underwater timber stockpile assessment and recovery operations
- archaeological surveying

Top: Pipeline stabilization mattresses (Gulf of Mexico).
Above: Standing tree in flooded reservoir (USA). Data courtesy FBI Dive Team.
Right: Oil platform (Gulf of Mexico). Data courtesy Fugro Oceaneering.
Below: River pipeline crossing (Finland). Data courtesy Peter Diving Services.

Profiling sonar is primarily used for quantitative measurements where a narrow, conically shaped beam generates a single range point for each ping.

Single Axis Profiling

The sonar is positioned stationary while the transducer rotates through a selected arc of coverage and creates a line of profile points. To collect a different profile, the sonar head is re-positioned.

Dual Axis Profiling

Integrating the single-axis profiling head with a mechanical second-axis drive (rotator) provides 3D capability. After collecting the single axis profile, the head is rotated by the second axis drive through pre-set increments and the scan process repeats. This generates a star-like pattern of profiles from a single position, after which the processed data generates a 3D point cloud projection.

Imaging Sonar Applications

Imaging sonar uses a fan-shaped acoustic beam to scan a specified area or target. Sonar imaging applications include:

- inspection of man-made structures (bridges, docks, piers and dams)
- site and seabed search and survey
- underwater construction support
- positioning stabilization mattresses and cable
- guiding grapples and buckets
- pipeline and cable surveys
- seafloor and sediment aggregate monitoring
- monitoring dredging and buckfill operations
- dive support
- underwater timber stockpile assessment and recovery operations
- archaeological surveying

Top: Pipeline stabilization mattresses (Gulf of Mexico).
Above: Standing tree in flooded reservoir (USA). Data courtesy FBI Dive Team.
Right: Oil platform (Gulf of Mexico). Data courtesy Fugro Oceaneering.
Below: River pipeline crossing (Finland). Data courtesy Peter Diving Services.

Imaging Sonar Applications

Imaging sonar uses a fan-shaped acoustic beam to scan a specified area or target. Sonar imaging applications include:

- inspection of man-made structures (bridges, docks, piers and dams)
- site and seabed search and survey
- underwater construction support
- positioning stabilization mattresses and cable
- guiding grapples and buckets
- pipeline and cable surveys
- seafloor and sediment aggregate monitoring
- monitoring dredging and buckfill operations
- dive support
- underwater timber stockpile assessment and recovery operations
- archaeological surveying

Top: Pipeline stabilization mattresses (Gulf of Mexico).
Above: Standing tree in flooded reservoir (USA). Data courtesy FBI Dive Team.
Right: Oil platform (Gulf of Mexico). Data courtesy Fugro Oceaneering.
Below: River pipeline crossing (Finland). Data courtesy Peter Diving Services.

Imaging Sonar Applications

Imaging sonar uses a fan-shaped acoustic beam to scan a specified area or target. Sonar imaging applications include:

- inspection of man-made structures (bridges, docks, piers and dams)
- site and seabed search and survey
- underwater construction support
- positioning stabilization mattresses and cable
- guiding grapples and buckets
- pipeline and cable surveys
- seafloor and sediment aggregate monitoring
- monitoring dredging and buckfill operations
- dive support
- underwater timber stockpile assessment and recovery operations
- archaeological surveying

Top: Pipeline stabilization mattresses (Gulf of Mexico).
Above: Standing tree in flooded reservoir (USA). Data courtesy FBI Dive Team.
Right: Oil platform (Gulf of Mexico). Data courtesy Fugro Oceaneering.
Below: River pipeline crossing (Finland). Data courtesy Peter Diving Services.
Kongsberg Mesotech Ltd.

About Kongsberg Mesotech Ltd.

Kongsberg Mesotech Ltd. is a global leader in the underwater acoustic industry with over 40 years of innovative product development and manufacturing experience. Characterized by exceptional engineering capabilities, the Company focuses on providing customers with superior image resolution by producing quality and reliable equipment. Continuous research and development keeps pace with growing markets and demand as well as changes in customer requirements.

Kongsberg Mesotech supplies a worldwide customer base with products for search and recovery, marine engineering, security and surveillance, fisheries and various other underwater imaging transducers. There is an extensive support network including training, product support and assistance with application and data interpretation.

Kongsberg Mesotech is the Canadian subsidiary of Kongsberg Maritime, a leader in the merchant marine and subsea industries. Kongsberg Maritime is a division of Kongsberg Gruppen (Group), an international technology corporation providing advanced solutions and services to the marine, oil and gas, defense and aerospace industries. The Group is comprised of Kongsberg Maritime, Kongsberg Oil and Gas Technologies, Kongsberg Defence Systems and Kongsberg Protech Systems, all of which focus on delivering high-quality products and premium service to global clients.

Kongsberg Group is a leading international technology corporation providing advanced solutions and services to the marine, oil and gas, defense and aerospace industries. The Group is comprised of Kongsberg Maritime, Kongsberg Oil and Gas Technologies, Kongsberg Defence Systems and Kongsberg Protech Systems, all of which focus on delivering high-quality products and premium service to global clients.

Kongsberg Group is a leading international technology corporation providing advanced solutions and services to the marine, oil and gas, defense and aerospace industries. The Group is comprised of Kongsberg Maritime, Kongsberg Oil and Gas Technologies, Kongsberg Defence Systems and Kongsberg Protech Systems, all of which focus on delivering high-quality products and premium service to global clients.

Kongsberg Maritime is a leader in the merchant marine and subsea industries. Kongsberg Maritime is a division of Kongsberg Group (Group), an international technology corporation providing advanced solutions and services to the marine, oil and gas, defense and aerospace industries. The Group is comprised of Kongsberg Maritime, Kongsberg Oil and Gas Technologies, Kongsberg Defence Systems and Kongsberg Protech Systems, all of which focus on delivering high-quality products and premium service to global clients.

Kongsberg Group is a leading international technology corporation providing advanced solutions and services to the marine, oil and gas, defense and aerospace industries. The Group is comprised of Kongsberg Maritime, Kongsberg Oil and Gas Technologies, Kongsberg Defence Systems and Kongsberg Protech Systems, all of which focus on delivering high-quality products and premium service to global clients.

Benefits of Underwater Inspection & Surveying:

• Superior image resolution
• Accurate data reporting

MS 1000 Scanning Sonar System

The high-resolution scanning sonar head operates on the full MS 1000 version processing software. The MS 1000 software has many advanced features for data interpretation, including the ability to measure lengths and area, georeference and track targets.

1171 Series High-resolution Sonar heads: A. Self-boost imaging transducer; B. fan beam imaging and profiling transducer; C. back-to-back jet imaging transducer.

High-resolution Scanning Sonar offers:

• narrow horizontal beam angle and smaller angular resolution (for superior image quality)
• tunable frequency transducers (model-dependent)
• exposed transducer (to eliminate acoustic lensing)
• increased power output (for better signal to noise ratio)

MS 1000 Processing Software offers:

• 3D profiling possible with rotating device
• Track Plotter module allows user to plot scanned area, georeference sonar targets and create GXML files
• networking capability
• target tracking
• simultaneous multiple head operation
Marine Engineering & Site Inspection

Kongsberg Mesotech pioneered the use of scanning sonar for underwater marine engineering applications. The Company is a world leader in the development of products used for visualization of underwater structures (bridges, docks, piers, dams, etc.) and using sonar to support a multitude of underwater construction applications.

Diving inspections are often challenged by high current, deep water, lack of visibility and debris accumulation around the structure. In addition to limiting the diver from completing a thorough inspection, debris build-up around bridge piers is potentially one of the most dangerous conditions the inspection diver faces. It introduces the possibility of entanglement, and even worse, diver entrapment if the debris moves.

Benefits of Underwater Inspection & Surveying:
- Superior image resolution
- Accurate data reporting
- Diver-free underwater inspections and lower costs

MS 1000 Scanning Sonar System

The high-resolution scanning sonar head operates on the full MS 1000 version processing software. The MS 1000 software has many advanced features for data interpretation, including the ability to measure length and area, geo-reference and track targets.

High-resolution Scanning Sonar offers:
- Narrower horizontal beam and smaller angular resolution (for superior image quality)
- Variable frequency transducers (angle dependent)
- Exposed transducer (to eliminate acoustic lensing)
- Increased power output (for better signal to noise ratios)

MS 1000 Processing Software offers:
- 3D profiling possible with rotating device
- Track Plotter module allows user to plot scanned area, georeference sonar targets and create GISTIFFs
- Networking capability
- Target tracking
- Simultaneous multiple head operation

Technical Training
Kongsberg Mesotech provides comprehensive training delivered on-site, at the Kongsberg Mesotech manufacturing facility in Vancouver, Canada or any Kongsberg facility. Kongsberg Mesotech also offers sonar application and data interpretation support.

Repair and Upgrade Services
Equipment repairs are available at Kongsberg Mesotech’s manufacturing facility and strategically located affiliates. Upgrades and major rebuilds are completed at the manufacturing facility.

About Kongsberg Mesotech Ltd.
Kongsberg Mesotech Ltd. is a global leader in the development of products and premium service to global client bases. The group is comprised of Kongsberg Gruppen (Group), an international technology corporation providing advanced solutions and services to the defence, security and aerospace industries. The group is headquartered in Norway.

Kongsberg Mesotech supplies a worldwide customer base with products for search and recovery, marine engineering, security and surveillance, fisheries and various other underwater applications. There is an extensive support network including training, product support and assistance with application and data interpretation.

Kongsberg Mesotech is the Canadian subsidiary of Kongsberg Maritime, a member of Kongsberg Maritime, a division of Kongsberg Gruppen (Group). Kongsberg Maritime is a division of Kongsberg Gruppen (Group) is an international corporation headquartered in Norway. About Kongsberg Gruppen

Kongsberg Maritime pioneered the use of scanning sonar for underwater marine engineering applications. The Company is a world leader in the development of products used for visualization of underwater structures (bridges, docks, piers, dams, etc.) and using sonar to support a multitude of underwater construction applications.

Diving inspections are often challenged by high current, deep water, lack of visibility and debris accumulation around the structure. In addition to limiting the diver from completing a thorough inspection, debris build-up around bridge piers is potentially one of the most dangerous conditions the inspection diver faces. It introduces the possibility of entanglement, and even worse, diver entrapment if the debris moves.

Benefits of Underwater Inspection & Surveying:
- Superior image resolution
- Accurate data reporting
- Diver-free underwater inspections and lower costs

MS 1000 Scanning Sonar System

The high-resolution scanning sonar head operates on the full MS 1000 version processing software. The MS 1000 software has many advanced features for data interpretation, including the ability to measure length and area, geo-reference and track targets.

High-resolution Scanning Sonar offers:
- Narrower horizontal beam and smaller angular resolution (for superior image quality)
- Variable frequency transducers (angle dependent)
- Exposed transducer (to eliminate acoustic lensing)
- Increased power output (for better signal to noise ratios)

MS 1000 Processing Software offers:
- 3D profiling possible with rotating device
- Track Plotter module allows user to plot scanned area, georeference sonar targets and create GISTIFFs
- Networking capability
- Target tracking
- Simultaneous multiple head operation

Training and Support
Kongsberg Mesotech provides comprehensive training delivered on-site, at the Kongsberg Mesotech manufacturing facility in Vancouver, Canada or any Kongsberg facility. Kongsberg Mesotech also offers sonar application and data interpretation support.